Skip to main content

Environmental & Sustainability

Name Investigator Tech ID Licensing Manager Name Micensing Manager Email Description Tags 1-Clik License
Lignin-Based Nanoparticles and Smart Polymers Dr. Hoyong Chung 15-122 Garrett Edmunds gedmunds@fsu.edu <p>Smart polymers are materials that are designed to have advanced functionality, enabling a host of new applications. The next challenge in this field is to develop classes of smart polymers that possess multiple complementary functions. Examples include stimulus-responsive materials that are self-healing and pressure-sensitive adhesives that form the basis for nanolithography.</p> <p>Dr. Chung created numerous approaches to developing these materials while incorporating natural, renewable resources, such as lignin, and leveraging advances in polymer chemistry, such as ruthenium metathesis catalysts. These novel materials can offer significant improvements over current production methods of smart polymers and the application of lignin-based materials.  Applications are nearly limitless with properties such as self-healing, shape-memory functionality, and responsiveness to external stimuli while taking advantage of biodegradable, readily available resources.</p>
Methods of Constructing Polyolefins having Reduced Crystallinity Dr. Alamo 09-166 Garrett Edmunds gedmunds@fsu.edu <p>The invention describes a family of polyolefins characterized by chain-walking defects of the type that add extra backbone carbons per monomer.</p> <p>These polyolefins display a large decrease in crystallinity relative to polyolefins known in the art. Specifically, the reduction in crystallinity is much greater than for earlier polypropylenes with a matched content of stereo or 1-alkene type defects. The claimed polyolefins can be an alkene-based homopolymer, or an alkene-based copolymer and can be made by a diimine-based catalyst or by a late metal catalyst. The defects in the polyolefin backbone are generated by a chain walking mechanism in which three or more carbons per monomer are added to the polymer backbone instead of two, as in conventional polymerization or copolymerization methods of alpha olefins.</p> <h1>Applications and Advantages:</h1> <ul> <li>Plastic wrapping</li> <li>Thin films</li> <li>Co-extrusion layers or molded parts in the absence of polymer blending or copolymerization</li> <li>The cost of materials production can be reduced</li> </ul>
Pulsed Gliding Arc Electrical Discharge Reactors Dr. Bruce Locke 06-142 Garrett Edmunds Gedmunds@fsu.edu <p>Gliding arc discharges have been investigated as a potential technology for gas phase pollution treatment and for liquid phase pollution treatment. Ultimately, the practical use of gliding arc technology to promote chemical transformations, such as the removal of organic pollutants in water or the generation of hydrogen peroxide, other reactive oxygen species, or reactive nitrogen species for treatment of potentially contaminated foods, depends on the efficiency that can be achieved.</p> <p>The present invention describes a plasma gliding arc discharge reactor that is useful for chemical transformations in liquids and gases. The reactor may include a housing having a plurality of divergent electrodes, a power supply connected to the electrodes delivering pulsed power to the reactor, and a nozzle that directs a mixture of a carrier gas and a liquid to a region between the divergent electrodes, thereby generating plasma in the region. The nozzle can include a first inlet for receiving the carrier gas, a second inlet for receiving the liquid and a mixing chamber that is configured to mix the carrier gas and the liquid prior to being directed to the region.</p>
The Soret Effect in Polymer-Electrolyte-Based Electrochemical Cells Daniel Hallinan 16-088 Garrett Edmunds gedmunds@fsu.edu <p>The Soret effect arises when a temperature gradient is imposed on a multi-component system, inducing a concentration gradient. There is no comprehensive theory of the Soret effect that applies to all the systems that have been studied. Polymer electrolytes are a novel and interesting system in which to study the Soret effect due to the dissimilar properties of polymers and salts.</p> <p>Polymer electrolytes provide a system in which the mobility of the components are dramatically different and in which the species solvating the ions (polymer segments) cannot transfer with the ion. This can lead to large partial molal free energy of transfer for ions in polymer electrolyte. In addition, the solid nature of polymer electrolytes precludes convection, which is a vexing source of error in thermal diffusion studies. Studies on polymer blends have found unexpectedly large Soret coefficients near a phase transition. With complex phase diagrams, polymer electrolytes provide an avenue to study this phenomena. In addition, the Soret effect in dry polymer electrolytes could potentially be used to convert waste heat into electricity and improve the efficiency of electrochemical cells.</p> <p>This technology describes measuring the Soret coefficient in a dry polymer electrolyte by determining the concentration gradient that develops in an imposed temperature gradient. The concentration gradient may be determined using various methods including an electrochemical approach and by magnetic resonance imaging. Transient studies may be used to determine the thermal diffusion coefficient, providing another way to calculate the Soret coefficient. Consideration is given to higher order effects such as non-constant transport parameters by determining the temperature dependence of both thermal mass diffusion and thermal energy diffusion.</p>
Derivative Reference-Based Method for Detection of Instability in Power Hardware-in-the-Loop Simulation James Langston 16-084 Michael Tentnowski mtentnowski@fsu.edu <p>Hardware-in-the-loop (HIL) is a form of simulation wherein a hardware device is interfaced to a digital real-time simulator (DRTS), which models the system that the hardware is intended to be connected to in the real world. HIL simulations offer a method to test physical devices under real time operating conditions. Various scenarios can be tested in a controlled environment to evaluate the performance of the device under test (DUT) before it is connected to the actual physical system.</p> <p>Most HIL simulations are closed-loop meaning that the response of the device is fed back to the DRTS. One type of closed-loop HIL is a Power HIL (PHIL). PHIL simulations involve interfacing the DRTS with a power device such as a motor, generator, transformer, inverter, etc. (DUT). The DRTS and the DUT exchange power over the PHIL interface. In some instances, a digital to analog (D/A) converter, which is included as part of the DRTS provide analog signals scaled down to electronic levels within ±10Vpk, ±10mA. In other instances, digital signals may be exchanged. These voltage levels are well below the operating voltage/current range of the DUT, therefore amplifiers and/or actuators are required in PHIL simulations to scale the signals sent from the DRTS to the DUT.</p> <p>Due to the closed-loop nature of PHIL simulations and the natural delays in the feedback loops, instability is often a problem, and can lead to damage and/or destruction of the equipment involved in the tests. Very little has been published regarding protection methods designed to detect instabilities in PHIL systems. Some of the proposed methods to detect these oscillations include over/under frequency protection and harmonic distortion-based protection.</p> <p>The invention provides a method for detecting instability in a PHIL simulation. The PHIL includes a RTS, a DUT, and an amplifier electrically connected between the RTS and the DUT. The method includes computing in a RTS a magnitude of a time-derivative of reference quantities and applying a low pass filter thereto. The method also includes comparing an output from the low pass filter to a threshold for detection of oscillations of the reference quantities. When oscillations are detected a mitigating step is applied to the DUT. The invention includes other variations of a similar concept.</p>
Alkylamine-Gold Nanoparticle Monolayers having Tunable Electrical and Optical Properties Daniel Hallinan 16-068 Garrett Edmunds gedmunds@fsu.edu <p>The unique physical and chemical properties of most traditional materials are largely determined by the spatial arrangement of the constituent building blocks (i.e. atoms) relative to one another.  When the scale of the building blocks extend to the range outside that of atomic elements (e.g. nanoparticles), the 'artificial solids' composed of such nanoparticles exhibit unique properties different from their bulk counterparts. In particular, monolayer two-dimensional (2D) artificial solids, serving as the structural basis for more complicated nanostructures, display distinct collective optical, electrical, and catalytic properties, thus finding vast prospective applications in high-performance solar cells, electrogenerated chemilumines, chemical sensors, transistors, integrated microcircuitry, batteries, capacitors, and thermolectrics. Akin to traditional materials, the physical and chemical properties of artificial solids are not only dependent on the elementary nanoparticle size and shape, but as importantly on the interparticle separation and the periodic arrangement of the constituents.</p> <p>FSU researchers have successfully prepared monolayer gold nanoparticle (Au NP) films using a water/organic solvent self-assembly strategy. A new approach, “drain to deposit”, is demonstrated most effective to transfer the Au NP films from a liquid/liquid interface to various solid substrates while maintaining their integrity. The interparticle spacing was tuned from 1.4 nm to 3.1 nm using different length alkylamine ligands. The ordering of the films increased with increasing ligand length. The surface plasmon resonance and the in-plane conductivity of the Au NP films both exhibit an exponential dependence on the particle spacing. These findings show great potential in scaling up the fabrication of high-performance optical and electronic devices based on metallic nanoparticle superlattices.</p> <p>In addition, these FSU researchers have developed a three phase system for depositing monolayer gold nanoparticle films. Using this three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange  from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties.</p> <h1>Applications and Advantages</h1> <ul> <li>Batteries <ul> <li>Electric car</li> <li>Laptop</li> <li>Mobile device</li> <li>Other electric vehicles and locomotion devices</li> </ul> </li> <li>Extremely precise detection of compounds</li> <li>Increases reliability of batteries</li> <li>Increases the performances of batteries</li> <li>Reduces the possibility of catastrophic failure of devices due to battery failure</li> </ul> <p> </p> <p> </p>
Active Flow Control for Wall-Normal Columnar Vortex Kunihiko Taira 18-004 Michael Tentnowski mtentnowski@fsu.edu <p>Flow control is often employed to diminish the appearance of vortices or alter the characteristics of vortices in a liquid. For example, in a sump pump, the emergence of submerged vortices may degrade pump performance. If the submerged vortices are sufficiently strong, these vortices can include strong low pressure cores, which can entrain air/vapor along their vortex cores. If such hollow-core vortices are engulfed by the pump, they can cause unbalanced loading and vibration, leading to undesirable noise and possible structural failure. Strong wall-normal vortices appear inside and outside of many fluid-based machines as well as in natural settings, including tornadoes and hurricanes.</p> <p>There have been numerous attempts to introduce passive vortex control techniques to prevent the generation of the aforementioned vortices or alter their pressure distributions. Yet passive control techniques do not offer the ability to adaptively adjust the control efforts to unsteady flow conditions (beyond design conditions). Moreover, some passive control devices are difficult to manufacture. Thus, these past efforts have shortcomings in offering reliable techniques to modify the pressure distribution of these vortices. Designing a more efficient and flexible vortex control strategy remains a challenge.</p> <p>This invention is directed to spreading the core region of a coherent wall-normal vortex and alleviating the low-pressure in the core in a flow field. Such vortices are ubiquitous in nature and engineering systems, ranging from hydrodynamic/aerospace applications to nature, such as hurricanes and subsurface vortices. Many passive control techniques exist for wall-normal vortices, but none include active flow control methods that can be applied in an adaptive manner. In order to solve this problem, this technology introduces forcing input (e.g., fluid jet and suction) near the core region of the vortex to destabilize the local<br />flow and spread the core region. This in turn lowers the local angular velocity and increase the core pressure of the vortex. The increase of the pressure has engineering benefits because low pressure at the core can create detrimental engineering effects for vortices in air and liquids. In some instances, the forced input follows a sinusoidal form in time and in a co-rotating/counter-rotating direction for effective breakup of the vortex.</p> <p>The invention provides a more adaptive technique than passive controls for alleviating the low-pressure effect of the vortex core using active flow control techniques. That is, the method of control provides a vortex control technique and device for vortices in different flow conditions. In order to achieve this, two different types of control strategies are disclosed based on co-rotating and counter-rotating mass injection and suction from the wall surface on which the vortex resides. The control strategy is employed on the wall where the vortex core is pinned and the mass injection/suction device is placed underneath the surface. The control input is adjusted with its frequency, amplitude, and direction of mass injection/suction.</p>
Organic-Inorganic Hybrid Bulk Quantum Materials and Methods Biwu Ma 17-036 Garrett Edmunds gedmunds@fsu.edu <p>Various types of light emitting materials have been developed, including organic and polymeric emitters, transition metal complexes, rare-earth doped phosphors, nanocrystals, and organic-inorganic hybrid perovskites.</p> <p>Organic-inorganic metal halide hybrids are a class of crystalline materials that may have unique structures and/or permit the tenability of one or more properties. Metal halide polyhedra can form three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures surrounded by organic moieties. The decreased dimensionality of the inorganic structures can lead to the emergence of unique properties. For example, unlike narrow emissions with a small Stokes shift that has been observed in typical 3D metal halide hybrids, broadband photoluminescence with a large Stokes shifts has been realized in corrugated-2D, 1D, and 0D metal halide hybrids, likely due to exciton self-trapping or excited state structural deformation.</p> <p>This invention comprises a bulk quantum material. In some embodiments, the bulk quantum material includes two or more photo- and/or electro-active species; and a wide band gap organic network comprising a plurality of organic cations; wherein each of the two or more photo- and/or electro-active species are (i) disposed in the wide band gap organic network, and (ii) isolated from each other. In some embodiments, the two or more photo- and/or electro-active species comprise two or more metal halide species.</p>
Metal Halide Perovskite Phosphors in LEDs for Full Color Display and Solid State Lighting Biwu Ma 17-009, 16-109 Garrett Edmunds gedmunds@fsu.edu <p>Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) are used widely in solid state lighting, electronic displays, bio-imaging, and photovoltaic applications.  A cheaper, more efficient LED device can impact multiple markets.  Some of the primary applications include television displays, mobile device displays, medical applications, solid state lighting, and energy applications.</p> <p>This LED technology comprises two components—an LED device and the process of manufacturing that device.  The LED device comprises earth-abundant materials. The manufacturing process takes place at room temperature using simple starting materials and common organic solvents in a single container. The color of the LEDs can be tuned. </p> <p>In addition, this technology focuses on using phosphors to get the desired color and intensity of light. Organic/inorganic perovskite materials are abundant, non-toxic, and inexpensive.  Thus, by using these materials to create phosphors, the cost of the LED device is reduced significantly. This is especially true as our technology approaches 100% conversion of the base LED energy to the phosphor.</p>
Voltage Profile Based Fault Detection Michael (Mischa) Steurer 13-147 Michael Tentnowski mtentnowski@fsu.edu <p>Fault location in a traditional power system is a challenging task. Electric power flows only in one direction: from the substation to the various loads. Therefore, when a severe short circuit fault occurs, there is a current rise with voltage sag near the faulted node or line and everything else that is downstream. If the fault protection system responds adequately it isolates the assumed faulted areas which are all the nearby and downstream customers of the actual faulted area.</p> <p>In a system containing distributed resources (DRs), most fault location technologies ignore the presence of DRs by assuming either low DRs penetration or no power injection from DRs during a fault. The few technologies that consider the presence of DRs have not considered a current limited system when a fault occurs.</p> <p>As the amount of local generation (PV, microturbines ... ) is increasing, the existing distribution systems fault location methods do not always apply because of various reasons including cost, complexity of the system due to mesh-like system topology, and bidirectional power flow. This FSU invention takes advantage of the system topology, the presence of the controllable voltage source convertors (VSCs), and the change of the voltage profile with the presence of the fault. Using the VSCs to help locate the fault will help overcome the issue of relying on the measured value of voltage when the voltage has completely collapsed in a section because of a fault in the distribution system. Instead of hindering the fault location process, the VSCs are used to help support the voltage, locate the fault, and provide fast restoration.</p>
Space Efficient Photobioreactor System Jose Vargas 10-090 Michael Tentnowski mtentnowski@fsu.edu <p>The continued use of petroleum-derived fuels is now widely seen as unsustainable. Presently available biofuels can be substituted for petroleum-derived fuels without the need for extensively modifying existing internal combustion engines.</p> <p>The present invention describes a microalgae-based bio-fuels production system in a space efficient photo-bioreactor. The bioreactor grows microalgae in a tall array of transparent flooded tubes. A nutrient media is circulated through the tubes. The array is configured to maximize the amount of sunlight falling upon each tube so that growth of the microalgae is as uniform as possible. Gassing/degassing systems are attached to the array of tubes at appropriate locations. These introduce carbon dioxide and remove oxygen. Cooling systems are preferably also provided so that the circulating media can be maintained at a desired temperature. Microalgae are harvested from the photo-bioreactor. The microalgae are filtered and dried. Lipids are then extracted from the microalgae. These lipids are made into biodiesel through a trans-esterification process and can be used to make other products as well.</p> <h2>Advantages:</h2> <ul> <li>Compact microalgae cultivation in a high productive manner</li> <li>Reduces the need for land since it has the potential to provide higher biomass production density than traditional systems of microalgae biomass production</li> <li>The modular conception allows for the gradual implementation of the system for in situ biofuel production wherever it is needed</li> </ul>
Sharing Cyrogenic Cooling Systems Between Large and Auxiliary Devices Sastry Pamidi 13-040 Michael Tentnowski mtentnowski@fsu.edu <p>Cryo-cooled or super-cooled power applications are increasing in popularity because they are typically lower in weight and volume, and more efficient than traditional power applications. Cryocooling is well suited to superconducting technologies (e.g., high-speed accelerators, wind power and flywheel applications) that need to be kept at cryogenic temperatures in order to function.</p> <p>Currently, the cost of cryocoolers is prohibitively high for small applications, in part, because cryocoolers are primarily designed for large devices. Additionally, cryocooling systems are suboptimum in their design because they 1) are based on a “use-or-lose” model that wastes cooling power that is not fully utilized and 2) cannot be shared between critical devices.</p> <p>A potential solution to these two issues involves a new design by Dr. Sastry Pamidi that enables cryogenic sharing of “waste” cooling between a large superconducting device and smaller devices in close proximity that also benefit from cryocooling. In it basic form, the invention is an add-on heat exchanger that is attached to an existing cryocooler through which a controllable flow of helium gas is circulated to “steal” excess cooling power from the device. The helium circulation system enables the productive use of excess cooling power and also eliminates the need for resistive heaters that are typically used to maintain required operating temperatures in cryocooled devices. Importantly, this exchanger will make it easier to run auxiliary devices under cryogenic environments without the need for each device to have its own dedicated cryocooler, thus reducing costs and improving the efficiency of operation as well as creating new opportunities for using cryogenics.</p> <h2>Applications:</h2> <ul> <li>Aerospace</li> <li>Cryogenic equipment manufacturing</li> <li>Military</li> <li>Power grid</li> <li>Transportation</li> <li>Research laboratories</li> <li>Universities, national labs, and hospitals</li> </ul> <h2>Advantages:</h2> <ul> <li>Enables sharing of cryocooling between a large device and smaller devices to minimize or eliminate the cooling waste produced by “use-or-lose” cryogenic methods</li> <li>Multiple devices can be cooled by a single cryocooler, rather than each device requiring its own cooler</li> <li>Improves energy efficiency and reduced cost of operation</li> <li>Creates new opportunities for using cryogenics in smaller devices and applications</li> <li>May be designed into new cryocoolers or added on to existing cryocoolers</li> <li>Compact design</li> <li>Vacuum tight</li> <li>Low pressure drop</li> <li>Highly efficient due to maximum heat transfer</li> <li>Simple design and manufacturing</li> <li>Optimal for a gas having low viscosity</li> </ul>
Organic Chemical Synthesis using Plasma Reactors with Liquid Organic and Liquid Water Bruce Locke 13-153 Garrett Edmunds gedmunds@fsu.edu <p>Electrical discharge plasma contacting liquid phases has been studied for a wide range of chemical, biomedical, environmental, and Materials synthesis applications.  The present invention utilizes a gas-water-organic plasma reactor for the conversion of alkanes into functionalized products (alcohols, aldehydes, etc.) using a pulsed plasma reactor with liquid water and flowing carrier gas. Hydrogen peroxide is also generated conjunction with the functionalized products.</p> <h1>Applications</h1> <ul> <li>Agriculture</li> <li>Healthcare</li> <li>Sanitization</li> <li>Waste water degradation</li> </ul>
Method for Locating Phase to Ground Faults in DC Distribution Systems Michael (Mischa) Steurer 08-040 Michael Tentnowski mtentnowski@fsu.edu <p>Electrical direct current (DC) distribution systems are operated without any of the phases grounded in order to prevent a phase-to-ground fault, the most common type of faults, to cause interruption of service. While theoretically such an ungrounded DC system can be operated with one phase grounded through a fault for an extended period of time, it is essential to find the fault location quickly in order to prevent any secondary phase to ground fault on the other phase to cause a disruptive phase-to-phase fault.</p> <p>The present invention describes a method for locating ground faults in an ungrounded or high-resistance grounded power distribution system having a power supply including high-speed switched power electronics (PE). The method includes utilizing wavelet analysis using Multi-Resolution Analysis (MRA) as a signal processing tool for recognition of characteristic features in the voltage signal. The voltage signal contains characteristic information in the high frequency range above the switching frequencies of the PE converters which allows for localization of the fault.</p> <p>In the future, the Invention can potentially simplify and speed up the phase-to-ground protection on converter dominated ungrounded DC and AC systems significantly. The Invention can be implemented as a computational component within a new version of a digital ground fault protection relay.</p>
Inflatable Solar Energy Collector Apparatus Ian Winger 09-128 Garrett Edmunds gedmunds@fsu.edu <p>Solar energy collector design composed of various mirror and lens combinations have been proposed, with significant attention being paid to the concentrating power of the lens or mirror. These solutions typically involve expensive coated glass surfaces and the weight of the components requires substantial mechanical actuators to move them so that they can accurately track the sun's motion across the sky. While functional, the prior art systems are expensive and complex.</p> <p>The present invention is an inflatable solar energy collector using two elongated and pressure-stabilized air chambers with a trough-shaped reflecting surface in between. The curvature of the reflecting surface is created by adjusting the differential pressure between the two air chambers and the device can be configured to provide a focal point outside the air chambers or inside the air chambers. For the version using the external focal point an external energy receiver is appropriately positioned. For the version using the internal focal point, the receiver is mounted inside one of the air chambers. The collector is preferably adjustable in azimuth to accurately track the sun's motion across the sky and is able to operate efficiently without the need for altitude adjustment, although altitude adjustment may also be optionally provided. The invention preferably incorporates a novel energy receiver in which stagnant air is entrapped and used as an insulator.</p> <p>This light-weight solar concentrator is of interest as the infrastructure required to support and rotate it is reduced compared to more massive concentrators. Parabolic troughs need to be rotated about only one axis to track the sun throughout the year and concentration power of troughs is sufficient to reach reasonable temperatures. This invention would therefore provide a solar concentrating device made of inexpensive materials and is relatively light and simple.</p>
A Single-Phase Single-Stage Grid-Interactive Inverter with Wide Range Reactive Power Compensation Dr. Liu and Dr. Li 11-131 Michael Tentnowski mtentnowski@fsu.edu <p>In this invention, a novel single-phase single-stage grid-interactive inverter based on a discrete Fourier Transform Phase Locked Loop technique is developed to separate the real and reactive power between different energy sources/storages. The hybrid modulation technique and sophisticated power allocation strategy are developed for the power generation system to achieve wide range reactive power compensation and enhance energy conversion efficiency. One distributed energy source and two energy storages are interfaced to the inverter with three cascaded H -bridge cells used to investigate the performance of the proposed system. Different energy source/storages with wide voltage change range can be directly connected in the invention and the single-stage energy conversion can be implemented. The present invention can integrate distributed energy sources/storages in one cascaded inverter. Due to the absence of DC-DC converter, single-stage energy conversion can be achieved. The hybrid modulation technique and power allocation strategy corresponding to the proposed system are developed to achieve the wide range reactive power compensation, voltage boost function, and the optimized power management.</p> <p>The proposed single-phase single-stage grid-interactive inverter is particularly suitable to meeting the increasing distributed power generation needs. It can facilitate to interface different distributed renewable energy sources or storages such as wind power, solar power, battery, fuel cell, Ultra-capacitor and so on. The switching loss will be decreased due to the cascaded structure and hybrid modulation technique.</p> <h2>Advantages</h2> <ul> <li>The multilevel AC output voltage will reduce the AC filter size, improve power quality and enhance the system reliability</li> <li>The transformerless structure will lead to lower cost and lighter weight, in addition to facilitating high power application</li> </ul>
A Self-Balanced Modulation and Magnetic Rebalancing Method for Parallel Multi-level Inverters Hui (Helen) Li 16-098 Michael Tentnowski mtentnowski@fsu.edu <p>A power inverter which can provide sinusoidal voltage or current is the key apparatus in the field of electrical machine drive and utility interface, such as in renewable energy generation systems and energy storage power conditioning systems. In order to achieve a higher power rating, each phase of the inverter may be constructed of paralleled phase legs. If two paralleled legs are connected to an output terminal by a magnetic coupling device, such as an "inter-phase transformer", or a "multi-winding autotransformer", or an "inter phase inductor", the output terminal of each phase will have a multilevel staircase waveform, which is closer to the desired sinusoidal waveform. Therefore, the inverter will require smaller magnetic components while still providing the benefit of higher dynamic response.</p> <p>The technology developed provides a finite state machine (FSM) based modulation method for parallel multi-level inverters. Within this invention, a modulation waveform is fed into a comparator to compare with carrier waveforms. Then, a digitized ideal waveform is generated, and the digitized ideal waveform is fed into a finite state machine (FSM) module to generate a switching pattern for each switch of the parallel multi-level inverter.</p>
1MHz Scalable Cascaded Z-Source Inverter Using Gallium Nitride (GaN) Device Dr. Hui (Helen) Li 11-127 Michael Tentnowski mtentnowski@fsu.edu <p>Currently, implementation of photo-voltaic (PV) systems into power grids is limited.  The reason for the limited use of PV systems in power grids is that the interface between the grid and the PV source very inefficient.  These inefficiencies are caused by module mismatch, orientation mismatch, partial shading, and maximum power point (MPPT) inefficiencies.  This technology provides a scalable cascaded Z-source inverter which can integrate distributed renewable energy sources and/or storages having a wide voltage range. The inverter uses a low voltage Gallium Nitride (GaN) device, which can be used to facilitate modular structure.  The GaN transistor is able to facilitate this structure due to ultra-high frequency, a small AC filter, and a DC electrolyte capacitor.  A comprehensive Z-source network design has been developed based on an innovative equivalent AC circuit model for the single phase photovoltaic system.  The invention is also suitable for hybrid renewable energy sources/storages application in wide system operation range.  A flexible and reliable control system is developed to improve the photovoltaic energy harvesting capability.</p> <h2><strong>Advantages</strong></h2> <ul> <li>Single energy conversion and boost function can be achieved simultaneously</li> <li>Independent maximum power point tracking for each Z-source inverter module can implement an efficient photovoltaic energy conversion</li> <li>This inverter is immune to shoot-through faults especially operating at high switching frequency and enhance the system reliability</li> <li>The scalable cascaded Z-source inverter is able to interface flexibly with different distributed renewable energy sources or storages in a wide voltage range, including: <ul> <li>wind power</li> <li>solar power</li> <li>battery</li> <li>fuel cell</li> <li>ultra-capacitor</li> </ul> </li> </ul> <h2><strong>Applications</strong></h2> <ul> <li>Photo-voltaic systems</li> <li>Plug-in electric hybrid vehicle</li> <li>Motor drives</li> <li>Uninterruptible power supply</li> </ul> <p> </p>
Nuclear waste recycling technology Professors Kenneth Hanson and Thomas Albrecht-Schmitt 17-054 Garrett Edmunds gedmunds@fsu.edu <p> </p> <p>Professor's Hanson's team has developed a Wavelength Selective Separation of Metal Ions Using Electroactive Ligands</p> <p>Given the similarity in atomic radius and binding affinities, separating lanthanides and actinides using chelating agents or ion exchange resins can sometimes be challenging. In contrast, lanthanide and actinide atoms/complexes have unique and narrow absorption features that may be useful for photochemical separations. With this in mind, we have recently introduced an entirely new photochemical separation strategy that relies on chemical transformations of the coordinating ligand, rather than the metal ion. Briefly, a ligand functionalized with an electroactive moiety is bound to metal ions in solution. Then, upon wavelength selective excitation of one of the coordination complexes, photoinduced electron transfer to/from the redox active group causes an irreversible reaction that chemically transforms the ligand. The differences in solubility, size, reactivity, etc. between the initial and reacted complexes, and not the properties of the metal ions, can then be used for separations.</p> <p> </p> <p>Learn more:</p> <p><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__pubs.rsc.org_en_content_articlelanding_2018_cc_c8cc03371d-23-21divAbstract&amp;d=DwMFaQ&amp;c=HPMtquzZjKY31rtkyGRFnQ&amp;r=WPBE5mf0vyLaRUqjuwH1sg&amp;m=MQjoWzcpnez0b0aZ3YIlyJ7Uz1TbxLBMySloV6JInok&amp;s=u0YgoTniS-4wPurrN-ptl6Dhkr6PjtRPfxURJVfDefw&amp;e=">https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03371d#!divAbstract</a></p> <p><a href="http://news.fsu.edu/news/science-technology/2018/07/05/shining-the-light-fsu-researchers-use-photons-to-separate-metal-ions/">http://news.fsu.edu/news/science-technology/2018/07/05/shining-the-light-fsu-researchers-use-photons-to-separate-metal-ions/</a></p>
Antifouling Coatings for Ion Exchange Resins Professor Joseph Schlenoff 17-053 Garrett Edmunds gedmunds@fsu.edu <p>Ion exchange resins are widely used for water polishing and purification (e.g. removal of heavy metals). This FSU invention provides a way to rapidly add a coating of nontoxic polymer to an existing anion exchange resin. This coating reduces fouling by algae, other microorganisms, and more, extending the life of the resin and making it easier to clean the resin bed by backflushing.</p> <p>The coating is produced by negative polyelectrolytes, which interacts with the positively charged resin and forms a thin film on the surface of the resin bead. Because the positive charge at the surface of the bead is substantially reduced, or even switched to negative, potential fouling materials interact less strongly with the resin surface.</p> <p>The molecular weight of the negative polyelectrolyte is selected to be sufficiently high such that it does not absorb into the resin bead. Thus, an ultrathin film of complex is limited to the surface of the bead. The bead capacity is not diminished and the amount of material consumed is on the order of a few mg per square meter of resin surface.</p> <p>The polyelectrolyte is water soluble and of low toxicity. Beads can be treated in situ or they can be pretreated in a batch during a typical washing step.</p> water,filter,water purification,potable water,ion exchange resin,antifouling
Sub-seasonal Forecasts of Winter Storms and Cold Air Outbreaks Dr. Ming Cai 16-090 Michael Tentnowski mtentnowski@fsu.edu <p style="font-size: 18px;" class="font_8"> </p> <p class="lead">"Our technology is a dynamics-statistics hybrid model to forecast continental-scale cold air outbreaks 20-50 days in advance beyond the 2-week limit of predictability for weather."</p> <p style="font-size: 18px;" class="font_8"> </p> <p style="font-size: 18px;" class="font_8"><span style="font-size: 18px;">Professor Cai's team has developed a technology that allows them to make Sub-seasonal forecasts for cold air outbreaks in winter season. These forecasts are made on the basis of the relationship of the atmospheric mass circulation intensity and cold air outbreaks. The atmospheric poleward mass circulation aloft into the polar region, including the stratospheric component, is coupled with the equatorward mass circulation out of the polar region in the lower troposphere. The strengthening of the later is responsible for cold air outbreaks in mid-latitudes.</span></p> <p style="font-size: 18px;" class="font_8"><span style="font-size: 18px;">Due to the inherent predictability limit of 1-2 weeks for numerical weather forecasts, operational numerical weather forecast models no longer have useful forecast skill for weather forecasts beyond a lead time of about 10 days. Recently, the research carried out by Professor Cai and his team shows that operational numerical weather forecast models do possess useful skill for atmospheric anomalies over the polar stratosphere in cold seasons owing the models' ability to capture the poleward mass circulation into the polar stratosphere.</span></p> <p style="font-size: 18px;" class="font_8"><span style="font-size: 18px;">They calculate the stratospheric mass transport into the polar region from forecast outputs of the US NOAA NCEP's operational CFSv2 model and use it as our forecasts for the strength of the atmospheric mass circulation. The anomalous strengthening of it is indicative of the high probability of occurrence of cold air outbreaks in mid-latitudes.They further derive a set of forecasted indices describing a state of stratospheric mass circulation to obtain detailed spatial pattern and intensity of the associated cold air outbreak events. </span></p> <p style="font-size: 18px;" class="font_8"><span style="font-size: 18px;">Because cold air outbreak events are accompanied with development of low and high pressure systems and frontal circulations, our forecasts of cold air outbreaks are also indicative of snow, frozen rain, high wind, icy/freezing and other winter storm related hazards besides a large area of below-normal cold temperatures.</span></p> <p><a href="http://www.amccao.com/">Forecast website: http://www.amccao.com/</a></p> <p><a href="https://weather.com/news/weather/news/snow-siberia-russia-united-states-cold">Professor Cai in the news</a></p> <p> </p>
Dual-Fluid Jet Nozzle for Generating Sharp Boundaries between Jets of Fluids Dr. Markus Huettel 16-107 Michael Tentnowski mtentnowski@fsu.edu <p>Dr. Markus Huettel and Alireza Merikhi have developed a device and method for rapid assessment of sensor response times as the sensor is switched rapidly between two or more testing fluids discharged from a multi-fluid jet nozzle. An embodiment of the novel device is a dual-fluid jet nozzle that ejects two distinct jets of testing fluid at the same velocity through a single nozzle discharge aperture divided by a sharp edged boundary wall, which effectively create a single jet stream containing two fluids separated by a sharp boundary. An embodiment of the novel device may be configured to discharge more than two jets of fluid to create a jet stream containing multiple fluids separated by sharp boundaries. A sensor tip is first exposed to a first testing fluid and then rapidly exposed to a second testing fluid. The sensor’s output may then be assessed to determine its response time.</p>
Stokes Drifters: Very Thin Drifters to Study Ocean Surface Circulation Dr. Nicolas Wienders 17-022 Michael Tentnowski mtentnowski@fsu.edu <p>Florida State University has designed a new instrument which can for the first time measure and monitor the ocean surface circulation within an inch of the surface where specific processes occur (the Stokes Drift). These important processes have never been measured, yet they are responsible for the movement of oil spills and other pollutants (plastic patches, river outflows, and radioactive leaks), the transport of fish eggs and larvae vital to fish life cycles, and the prediction of the movement of red tides to the coast. Existing drifters measure at least 50cm long/deep and are incapable of isolating the circulation at the ocean surface or the effect of the Stokes Drift.</p> <p>The proposed instrument will help calibrate new numerical models including Stokes Drift parameterization and recently designed radars and satellites by providing a very new and unique sampling of ocean surface circulation.</p> <p>The drifters are disks about 6 inches in diameter and small enough to measure the effect of the smallest gravity waves. They are also very thin to isolate the effect of the Stokes Drift at the ocean surface. Powered by batteries and/or solar panels, an accelerometer activates the antennas in clear sight of the satellites at any time.</p> <p>The drifters are about 20 percent buoyant so they are only partially immersed to allow for GPS reception and satellite data transmission while minimizing the wind drag. The drifters will transmit time, position and optional data stream via satellite at user programmable intervals.To ensure the drifters will not be affected by flipping from waves, they have GPS and satellite antennas on both sides.</p> <p><a rel="noopener" href="http://www.cpalms.org/Public/PreviewResourcePV/Preview/151491" target="_blank">An educational video about surface currents featuring Dr. Wienders</a></p> <p><a rel="noopener" href="http://drifters.ocean.fsu.edu/" target="_blank" title="http://drifters.ocean.fsu.edu/">http://drifters.ocean.fsu.edu/</a></p> <p class="lead"><a rel="noopener" href="ftp://ftp.coaps.fsu.edu/pub/morey/SurfaceDrifters/drifters_mov.gif" target="_blank">View the real time drifter trajectories from our first experiment. </a></p> <p class="lead"><a href="http://coaps.fsu.edu/experiment-testing-new-drifter-design-underway-in-the-gulf-of-mexico">Experiment testing new drifter design underway in the Gulf of Mexico</a></p> <h2>Applications:</h2> <ul> <li>Federal agencies such as NSF, NOAA, and NASA.</li> <li>State and local agencies such as FWC and DEP</li> <li>Environmental groups</li> <li>Oil companies</li> <li>Fisheries</li> <li>Water management Districts</li> <li>Universities and independent scientists and researchers</li> </ul> <h2>Advantages:</h2> <ul> <li>Small size can mimic the behavior of pollutants or the evolution of river plumes at the ocean surface</li> <li>Minimizes wind drag</li> <li>Solves problem of potential flips with internal antennas on both sides of drifter</li> <li>Cost efficient</li> </ul> <p>Exclusive license: MetOcean <a href="https://www.metocean.com/product/stokes-iridium-drifter/">https://www.metocean.com/product/stokes-iridium-drifter/</a></p>
Water Seepage Meter Ming Ye 20-054 Michael Tentnowski mtentnowski@fsu.edu <p>The seepage meter is installed into sediments of a body of water by inserting a PVC pipe into the sediment bottom, while ensuring the top of the tube is above the water’s surface. After allowing the system to equilibrate, the meter is activated.  A servo motor regulates the water level, and the device records base measurements. A linear position sensor determines if water is leaching out of the groundwater aquifer into the body of water, or if water is recharging from surface water into the groundwater aquifer.  A data logger measures the charge/recharge curve and sends information remotely for analyses of the data.  The measurements determine seepage rates and hydraulic conductivity of the sediments.</p>
Data-Driven Recirculating Aquaculture System Moses Anubi 21-055 Michael Tentnowski mtentnowski@fsu.edu <p>A recirculating aquaculture system with a data-driven control strategy that improves the growth rate of cultured species (ex: shrimp, tilapia), minimizes required feed, reduces water consumption by improving waste removal from recirculating water, and provides robustness against uncertainty and disturbances. The system uses low-cost and readily available sensors to obtain estimates of concentrations of hard to measure target parameters such as ammonia, nitrate, nitrite, chemical oxygen demand, and phosphate).  It is controlled in real-time using data-driven (including machine learning) algorithms.</p> <p>In addition to the main culture tank, the system houses bioreactors for nitrification and denitrification in the waste removal process. The type of reactor varies but may include a mixed bed biofilm reactor (MBBR) and an anaerobic suspend growth reactor or sequencing batch reactor (SBR). These reactors are equipped with sensors and dosing pumps to cultivate a monitored biomass (biofloc). An intelligent control strategy is constructed from measurement data to optimize the waste removal ability of the biomass and to track reference setpoints which can be sized appropriately to feed plants in an aquaponics or hydroponics operation. The purpose of this design is to create a semi-automated method to continuously monitor and control aquaculture systems for maximum food production.</p>
Polyelectrolyte Drying Agents Dr. Joseph Schlenoff 21-026 Garrett Edmunds gedmunds@fsu.edu <p><span>This novel anhydrous polyelectrolyte complex can be used as an effective drying agent for removing water from solvents and gases. It can be reactivated at low temperatures, Drying agents, including calcium sulfate, molecular sieves, silica gel, and more, are often used in industrial applications to remove water from liquids and gases where moisture-control is important. Many industrial drying agents can reversibly absorb water, meaning they can be “reactivated” through heating under a vacuum. Often, the temperatures – and, therefore, energy – required to reactivate these drying agents are high, in excess of 200 °C or 300 °C. The present invention is a polyelectrolyte complex (PEC) and is an effective drying agent, performing as well as commonly available agents such as molecular sieves and Drierite in acetonitrile, tetrahydrofuran, and toluene. PEC can be regenerated at lower temperatures, with complete water loss at about 120 °C, and is stable up to 400 °C. PEC is made of positively- and negative-charged polymers and is easily synthesized from readily available, low-cost starting materials.</span></p> <p><span>Key Words :polymers, environmental remediation, drying agent, desiccant, polyelectrolyte</span></p>
LEDs from Metal Halide Perovskites Dr. Biwu Ma 18-034 Garrett Edmunds gedmunds@fsu.edu <p><span>Metal halide perovskites have emerged as a new class of low-cost solution processable semiconductor materials with applications in a variety of optoelectronic devices, from photovoltaics, to photodetectors, lasers, and light emitting diodes (LEDs). Efficient electrically driven LEDs with green light emission based on lead bromide perovskites, such as MAPbBr3 and CsPbBr3 have been achieved. While electrically driven perovskite LEDs have shown great promise with the device efficiency approaching to those of organic and quantum dot LEDs, a number of challenges, such as long-term stability and color tunability, remain to be addressed before the consideration of commercialization. For full-color display and solid-state lighting applications, highly efficient blue and red LEDs are required in addition to green ones, which however have yet achieved comparable device performance for perovskites-based devices. To implement red perovskite LEDs, two major strategies have been attempted to date, one relying on mixing halide, and the other involving the control of quantum well structures. Mixing halide has been shown to enable precise color tuning of photoluminescence and electroluminescence of perovskite LEDs. However, mixed halide perovskites show relatively low photoluminescence quantum efficiency. More critically, mixed-halide perovskites suffer from low spectral stability due to ion migration and phase separation under illumination and electric field. the change of electroluminescence color during the device operation has been observed in all LEDs based on mixed-halide perovskites. In this invention disclosure, we report bright and efficient red perovskites LEDs with great spectral stability by using quasi-2D halide perovskites/polymer (i.e. PEO, PVK, PIP, etc.) composite thin films as the light-emitting layer. By controlling the molar ratios of large organic salt (i.e. benzyl ammonium iodide, phenethylammonium iodide, butylammonium iodie, etc.) and inorganic salts (Csl and Pbl2), FSU researchers have been able to obtain luminescent quasi-2D perovskite thin films with tunable colors from red peaked at 615 nm to deep red peaked at 676 nm. The perovskites/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Advantages include: 1. These quasi-2D halide perovskites/polymer composite thin films have high photoluminescence quantum efficiency and superior thin film morpology. 2. Electrically driven LEDs with tunable emissions based on quasi-2D halide perovskites/polymer composite thin films have been achieved with superior device performance. 3. These devices show exceptional EL spectra stability and device performance stability.</span></p> <p> </p> <p><span>Key Words : Chemical Synthesis, LEDs, Perovskites</span></p>
A Rapid Laboratory Testing Protocol to Evaluate Pavement Interlayer System Qian Zhang 21-024 Garrett Edmunds gedmunds@fsu.edu <p>The invention is a small-scale lab testing protocol, including testing apparatus, testing procedures, and data analysis procedures, for rapid and accurate evaluation of the performance of interlayer products and other treatment methods on delaying or suppressing the reflective cracking. The testing protocol will utilize bench-scale specimens and consider various effects of temperature and traffic loadings and load transfer coefficient on the performance of the pavement repair system.</p> <p>Advantages</p> <ul> <li>Quicker testing time</li> <li>Small scale environment is all that is needed.</li> </ul>
A System for Removing Trichloroethane, Trichloroethene, and 1,4-Dioaxane from Contaminated Wastewater Bruce Rittman 20-056 Garrett Edmunds gedmunds@fsu.edu <p>This invention relates to a synergistic system featuring coupled precious-metal catalysis and biodegradation in series.  It contains methods for forming catalyst-film capable of removing TCA and TCE.  It contains methods for forming ethane-oxidizing biofilm capable of 1,4-dioxane biodegradation.  It contains methods for removing TCA, TCE, and 1,4-D using the synergistic system containing a reactor with catalysts followed by a reactor with microorganisms.  In a certain embodiment, the system comprises a membrane, a catalyst-precursor medium, a microorganism-enrichment medium, an inoculant comprising a biofilm-forming population of microorganisms, and a hydrogen-gas source along with an oxygen-gas source.</p> <p>Advantages</p> <ul> <li>State-of-the-art technology that removes TCA, TCE 1,4-dioxane which cannot be done solely by chemical or biological processes.</li> <li>Easy yet accurate method of chemical regulation to mitigate these chemical toxins.</li> </ul>
Calcium-Resistant Clay-Polymer Liner for Containment of Aggressive Leachates Tarek Abiochou 20-046 Garrett Edmunds gedmunds@fsu.edu <p>There is a need for soil-based liner systems in containment facilities as an alternative to compacted clay liners to control groundwater contamination from leaches.  Geosynthetic Clay Liners (GCL’s) made with bentonite have been widely used in these applications.  However, bentonite only GCL’s are not effective for calcium-rich leachates such as waste from energy power plants, leachates from coal-ash by-products, and leachates from mining operations.</p> <p>The industry has developed “Polymer-Modified” GCL’s containing bentonite and water-soluble polymers.  Some of these new products seem to work only when the ionic strength of the leachates is below a certain value.  These polymers also elute from the GCL (leave the GCL) when permeated with harsher leachates.  This can lead to even higher permeabilities.</p> <p>We have developed a mix of granular bentonite and a specific super-absorbent polymer that can be used to manufacture a new generation of Geosynthetic Clay Liners.  The polymer is resistant to aggressive leachates that are rich in divalent cations.  The polymer used in the new mix design does not elute from the GCL substrate.  Therefore, it maintains low permeability in the long-term.  There is no product currently on the market that can achieve the performance of our new design with this new polymer at its base.</p> <p>Advantages</p> <ul> <li>The polymer is resistant to aggressive leachates that are rich in divalent cations.</li> <li>The polymer used in the new mix design does not elute from the GCL substrate.</li> <li>Therefore, it maintains low permeability in the long-term.</li> </ul>
Water Purification and Desalination Membrane Justin Kennemur, PhD 20-049 Garrett Edmunds gedmunds@fsu.edu <p><strong>Applications</strong></p> <p>An easily-synthesized and highly-efficient polymer membrane which can be used for water purification and desalination, membrane purification and separation, anti-bacterial coatings, and any industry interested in patterned nanostructures.</p> <p><strong>Key Benefits</strong></p> <ul> <li>A single, well-ordered nanoarray membrane allows simultaneous transport of both positive and negative ions</li> <li>Synthesis utilizes inexpensive and widely available precursors</li> <li>Process is milder than previously created materials</li> </ul> <p><strong>Technical Summary</strong></p> <p>Charged mosaics are polymers with coexisting yet separate domains of positive and negative charges. As a membrane, they have unique transport properties over typical ion exchange membranes composed of one type of single ion conductor used in many nanofiltration processes. This membrane with coexisting zones of polyanions and polycations can produce high salt flux with high rejection of neutral solutes. </p> <p>While these types of membranes have been long known to be technologically valuable, previous syntheses required harsh treatments and economically prohibitive techniques. FSU researchers have developed a new low-cost, mild system that utilizes block copolymer (BCP) self-assembly to synthesize these charge mosaic membranes. The two-step process ensures that reactions occur one domain at a time and maintains integrity of film morphology.</p> <p>An article detailing the innovation was published in <a rel="noopener" href="https://pubs.acs.org/doi/full/10.1021/acs.macromol.0c00707" target="_blank" title="Macromolecules">Macromolecules</a></p> <p><strong>Inventor Information</strong></p> <p>Dr. Justin G. Kennemur received his PhD in Analytical Polymer Chemistry from North Carolina State University in 2005. His current research <span>seeks to understand how chemical composition and architecture of macromolecules ultimately leads to advanced functionality, chemical recyclability, and self-assembly capabilities. This is done by leveraging physical organic chemistry concepts to develop synthetic techniques in modern polymer chemistry.</span></p> <p> </p> <p> </p> water purification,desalination,nanoparticle,nanofiltration,anti-bacterial,polymer