Name | Investigator | Tech ID | Licensing Manager Name | Micensing Manager Email | Description | Tags | 1-Clik License |
---|---|---|---|---|---|---|---|
1MHz Scalable Cascaded Z-Source Inverter Using Gallium Nitride (GaN) Device | Dr. Hui (Helen) Li | 11-127 | Michael Tentnowski | mtentnowski@fsu.edu | <p>Currently, implementation of photo-voltaic (PV) systems into power grids is limited. The reason for the limited use of PV systems in power grids is that the interface between the grid and the PV source very inefficient. These inefficiencies are caused by module mismatch, orientation mismatch, partial shading, and maximum power point (MPPT) inefficiencies. This technology provides a scalable cascaded Z-source inverter which can integrate distributed renewable energy sources and/or storages having a wide voltage range. The inverter uses a low voltage Gallium Nitride (GaN) device, which can be used to facilitate modular structure. The GaN transistor is able to facilitate this structure due to ultra-high frequency, a small AC filter, and a DC electrolyte capacitor. A comprehensive Z-source network design has been developed based on an innovative equivalent AC circuit model for the single phase photovoltaic system. The invention is also suitable for hybrid renewable energy sources/storages application in wide system operation range. A flexible and reliable control system is developed to improve the photovoltaic energy harvesting capability.</p> <h2><strong>Advantages</strong></h2> <ul> <li>Single energy conversion and boost function can be achieved simultaneously</li> <li>Independent maximum power point tracking for each Z-source inverter module can implement an efficient photovoltaic energy conversion</li> <li>This inverter is immune to shoot-through faults especially operating at high switching frequency and enhance the system reliability</li> <li>The scalable cascaded Z-source inverter is able to interface flexibly with different distributed renewable energy sources or storages in a wide voltage range, including: <ul> <li>wind power</li> <li>solar power</li> <li>battery</li> <li>fuel cell</li> <li>ultra-capacitor</li> </ul> </li> </ul> <h2><strong>Applications</strong></h2> <ul> <li>Photo-voltaic systems</li> <li>Plug-in electric hybrid vehicle</li> <li>Motor drives</li> <li>Uninterruptible power supply</li> </ul> <p> </p> | ||
A Method for Making Ultralow Platinum Loading and High Durability Membrane Electrode Assembly for PEMFCS | Dr. Jim Zheng | 18-032 | Garrett Edmunds | gedmunds@fsu.edu | <p>FSU researchers have created a method of making membrane electrode assembly (MEA) which has following characteristics:</p> <p>(1) the unique microstructure and well-connected nanotubes network ensures a high electron conductivity</p> <p>(2) the platinum group metal (PGM) nanoparticles are de posited electrochemically in a liquid solution on the outermost surface area of an established porous CNT/CNF buckypaper network such that the locations of these nanoparticles are accessible by both electrons and gas</p> <p>(3) the surfaces of deposited PGM nanoparticles and buckypaper network are coated in a layer of Nafion electrolyte using electrophoretic deposition (EPD) in a Nafion monomer solution and combined with the liquid dropping method, in order for the PGM nanoparticles to be accessible by protons.</p> <p>This method provides a novel approach to fabrication of the “ideal” membrane electrode assembly (MEA) in which most of the platinum group metal (PGM) catalytic particles are located at sites that satisfy the triple-phrase boundary (THB) condition and maximize the PGM usage.</p> | ||
A Method of Producing Extracellular Metal or Metalloid Nanoparticles Using a Bioreactor | Youneng Tang | 18-031 | Michael Tentnowski | mtentnowski@fsu.edu | <p>Metals and metal ions are essential trace elements for humans and animals. However, when presenting in water at high concentrations, they are often toxic and can cause diseases such as hair loss and reproductive failure. Consequently, metal and metal ion contamination represent a potential health hazard. A major cause of contamination in water is the disposal of agricultural drainage. Selenium (Se) is one such element, and can be used to exemplify the hazards of metal and metal ion contamination. The maximum contaminant level set by U.S. Environmental Protection Agency for Se in drinking water is 50 μg Se/L.</p> <p>Thus, this technology is directed to bio-electrochemical reactors, methods of reducing metal ions in contaminated medium to extracellular metal or metalloid nanoparticles, and methods and devices for separating the extracellular metal or metalloid nanoparticles from the bacteria. For example, the bio-electrochemical reactor is used as a selector to select only bacteria that<br />produce extracellular metal or metalloid nanoparticles from an electrode inoculum comprising a highly diverse mixed culture. As a result, the bio-electrochemical reactors described serve as an effective means for removing and separating metal ions from contaminated water.</p> | ||
A Modular Multilevel Duel-Active-Bridge DC-DC Converter | Hui Li | 16-095 | Michael Tentnowski | mtentnowski@fsu.edu | <p>A battery energy storage system (BESS) for medium voltage direct current (MVDC) or high voltage direct current (HVDC) grids or systems. The BESS comprises split-battery units and an isolated DC-DC converter interface connecting the battery units to the MVDC or HVDC system. The isolated BESS converter is a soft-switched modular multilevel dual-active-bridge (DAB) converter which has DC fault rid-through capability. The converters can be single-phase or poly-phase configurations and can be controlled to maintain a desired DC output under normal and DC grid fault conditions.</p> | ||
A Self-Balanced Modulation and Magnetic Rebalancing Method for Parallel Multi-level Inverters | Hui (Helen) Li | 16-098 | Michael Tentnowski | mtentnowski@fsu.edu | <p>A power inverter which can provide sinusoidal voltage or current is the key apparatus in the field of electrical machine drive and utility interface, such as in renewable energy generation systems and energy storage power conditioning systems. In order to achieve a higher power rating, each phase of the inverter may be constructed of paralleled phase legs. If two paralleled legs are connected to an output terminal by a magnetic coupling device, such as an "inter-phase transformer", or a "multi-winding autotransformer", or an "inter phase inductor", the output terminal of each phase will have a multilevel staircase waveform, which is closer to the desired sinusoidal waveform. Therefore, the inverter will require smaller magnetic components while still providing the benefit of higher dynamic response.</p> <p>The technology developed provides a finite state machine (FSM) based modulation method for parallel multi-level inverters. Within this invention, a modulation waveform is fed into a comparator to compare with carrier waveforms. Then, a digitized ideal waveform is generated, and the digitized ideal waveform is fed into a finite state machine (FSM) module to generate a switching pattern for each switch of the parallel multi-level inverter.</p> | ||
A Single-Phase Single-Stage Grid-Interactive Inverter with Wide Range Reactive Power Compensation | Dr. Liu and Dr. Li | 11-131 | Michael Tentnowski | mtentnowski@fsu.edu | <p>In this invention, a novel single-phase single-stage grid-interactive inverter based on a discrete Fourier Transform Phase Locked Loop technique is developed to separate the real and reactive power between different energy sources/storages. The hybrid modulation technique and sophisticated power allocation strategy are developed for the power generation system to achieve wide range reactive power compensation and enhance energy conversion efficiency. One distributed energy source and two energy storages are interfaced to the inverter with three cascaded H -bridge cells used to investigate the performance of the proposed system. Different energy source/storages with wide voltage change range can be directly connected in the invention and the single-stage energy conversion can be implemented. The present invention can integrate distributed energy sources/storages in one cascaded inverter. Due to the absence of DC-DC converter, single-stage energy conversion can be achieved. The hybrid modulation technique and power allocation strategy corresponding to the proposed system are developed to achieve the wide range reactive power compensation, voltage boost function, and the optimized power management.</p> <p>The proposed single-phase single-stage grid-interactive inverter is particularly suitable to meeting the increasing distributed power generation needs. It can facilitate to interface different distributed renewable energy sources or storages such as wind power, solar power, battery, fuel cell, Ultra-capacitor and so on. The switching loss will be decreased due to the cascaded structure and hybrid modulation technique.</p> <h2>Advantages</h2> <ul> <li>The multilevel AC output voltage will reduce the AC filter size, improve power quality and enhance the system reliability</li> <li>The transformerless structure will lead to lower cost and lighter weight, in addition to facilitating high power application</li> </ul> | ||
Active Adaptive Low-Pass Filter Control for Power Electronic Converters | Yanjun Shi | 21-057 | Michael Tentnowski | mtentnowski@fsu.edu | <p><span>A digital control method that builds on the principle of active damping using a virtual memristor low pass filter which adjusts the cutoff frequency based on the output voltage in a way such that adaptive response to transient features is achieved. Implementation is done by linearizing the equations governing the behavior of a memristor and directly programming the control algorithm onto a digital signal processor. Greater stable operation area is covered by the controller, as opposed to conventional active damping control.</span></p> | ||
Active Flow Control for Wall-Normal Columnar Vortex | Kunihiko Taira | 18-004 | Michael Tentnowski | mtentnowski@fsu.edu | <p>Flow control is often employed to diminish the appearance of vortices or alter the characteristics of vortices in a liquid. For example, in a sump pump, the emergence of submerged vortices may degrade pump performance. If the submerged vortices are sufficiently strong, these vortices can include strong low pressure cores, which can entrain air/vapor along their vortex cores. If such hollow-core vortices are engulfed by the pump, they can cause unbalanced loading and vibration, leading to undesirable noise and possible structural failure. Strong wall-normal vortices appear inside and outside of many fluid-based machines as well as in natural settings, including tornadoes and hurricanes.</p> <p>There have been numerous attempts to introduce passive vortex control techniques to prevent the generation of the aforementioned vortices or alter their pressure distributions. Yet passive control techniques do not offer the ability to adaptively adjust the control efforts to unsteady flow conditions (beyond design conditions). Moreover, some passive control devices are difficult to manufacture. Thus, these past efforts have shortcomings in offering reliable techniques to modify the pressure distribution of these vortices. Designing a more efficient and flexible vortex control strategy remains a challenge.</p> <p>This invention is directed to spreading the core region of a coherent wall-normal vortex and alleviating the low-pressure in the core in a flow field. Such vortices are ubiquitous in nature and engineering systems, ranging from hydrodynamic/aerospace applications to nature, such as hurricanes and subsurface vortices. Many passive control techniques exist for wall-normal vortices, but none include active flow control methods that can be applied in an adaptive manner. In order to solve this problem, this technology introduces forcing input (e.g., fluid jet and suction) near the core region of the vortex to destabilize the local<br />flow and spread the core region. This in turn lowers the local angular velocity and increase the core pressure of the vortex. The increase of the pressure has engineering benefits because low pressure at the core can create detrimental engineering effects for vortices in air and liquids. In some instances, the forced input follows a sinusoidal form in time and in a co-rotating/counter-rotating direction for effective breakup of the vortex.</p> <p>The invention provides a more adaptive technique than passive controls for alleviating the low-pressure effect of the vortex core using active flow control techniques. That is, the method of control provides a vortex control technique and device for vortices in different flow conditions. In order to achieve this, two different types of control strategies are disclosed based on co-rotating and counter-rotating mass injection and suction from the wall surface on which the vortex resides. The control strategy is employed on the wall where the vortex core is pinned and the mass injection/suction device is placed underneath the surface. The control input is adjusted with its frequency, amplitude, and direction of mass injection/suction.</p> | ||
Active Wave Canceler | Hui Li | 19-031 | Michael Tentnowski | mtentnowski@fsu.edu | <p>A device to solve over voltage issues caused by the reflected wave phenomenon (RWP). A motor drive connected to a motor through long cables can cause the reflection of the electromagnetic wave, resulting a voltage spikes at the motor side that is twice as high as the voltage at the drive side. This transient over voltage can damage the insulation of the motor or reduce its useful life. The canceler detects rising/following edge of the motor drive and generates a short pulse that breaks the voltage slope so that over voltage at motor side is suppressed.</p> | ||
Additive Manufacturing of a Wireless Ceramic High Temperature and Pressure Sensor | Cheryl Xu | 17-004 | Garrett Edmunds | gedmunds@fsu.edu | <p>Maintaining situational awareness of the weapon environment is desirable for developing the next generation of robust missile and munition (M&M) systems that can withstand the extreme acceleration, temperature, and pressure conditions that are presented by traditional fighter and hypersonic aircraft. In addition, tracking the temperature and pressure of high temperature turbines used in turbojets both for aircraft and energy production is highly desirable. Conventional techniques for remotely monitoring munition assets are primarily performed by proximate environmental monitoring by fuel sensors, accelerometers, surface acoustic wave sensors, chemical resistors, and temperature sensors. These are limited to storage and transportation purposes and typically have a limited temperature range, e.g., -55 °C to 125 °C.</p> <p>Conventional temperature sensors used in the evaluation of M&M systems and turbine systems include thermocouples, thermistors, resistance thermometers, quartz thermometers, which all include a metallic coil inductor. Due to the oxidation of the metallic coil inductor, these temperature sensors cannot be used in high temperature environments for prolonged periods of time and can only be used under wired measurement conditions.</p> <p>Conventional pressure sensors used in these applications include passive pressure sensors based on resistive or capacitive sensing mechanisms. These sensors also require a wire interconnection and they cannot operate effectively in high temperature environments. Moreover, pressure sensors that utilize a patch antenna operate within a limited temperature range, e.g., -55 °C to 125 °C, because of the metallic wire used with the patch antenna.</p> <p>The technology developed at FSU comprises a wireless temperature and pressure sensor which includes a ceramic coil inductor having ceramic material and a relatively high volume fraction of carbon nanotubes. The combination leverages the remarkable electrical and mechanical properties (stiff and strong) of carbon nanotubes (CNTs) and the thermal properties (temperature sensitivity) of ceramic materials. </p> <p>Generally, the temperature sensors comprise a ceramic coil inductor that is formed of a ceramic composite and a thin film polymer-derived ceramic (PDC) nanocomposite having a dielectric constant that increases monotonically with temperature and the pressure sensors comprise a ceramic coil inductor formed of a ceramic composite, which includes carbon nanotubes and/or carbon nanofibers.<span> This novel technology has the potential to revolutionize the space industry, defense industry, and engineering.</span></p> <h2>Advantages</h2> <ul> <li> <p class="lead"><span class="small">The ability to provide real-time, in-flight monitoring of systems that operate in high temperature and pressure environments</span></p> </li> <li> <p class="lead"><span class="small">The ability to maintain safety and effectiveness of critical parts and materials without the need for extensive nondestructive evaluation (NDE) (for temperature sensors), thereby reducing cost and time</span></p> </li> <li> <p class="lead"><span class="small">On-demand tracking and assessing of the status of systems over extended periods, based upon changing conditions</span></p> </li> </ul> <p> </p> |